
thecommoner :: issue 14 :: winter 2010

Chapter 3

Free Software as Property

J. Martin Pedersen

h t t p : / / w w w . c o m m o n e r . o r g . u k

thecommoner :: issue 14 :: winter 2010

3 Free Software as Property

“All property relations in the past have continually
been subject to historical change consequent upon
the change in historical conditions” (The
Communist Manifesto).

“The Tao abides in non-action, Yet nothing is left
undone” (Lao Tzu).

3.1 Introduction.

This final chapter is about Free Software. It will provide a
detailed analysis of what Free Software is and how it came to be
a global social movement. There is a clear and deeply embedded
normative element to the Free Software movement in that it
posits community as a desirable alternative to private control
over software and information and knowledge in general. In that
sense, the Free Software movement reverses the process from
commoning to privatisation: commoning substitutes for
privatisation on normative grounds. This normative element is
articulated in the GNU General Public License, which is a legal
document, more precisely a software license, that defines the
Free Software community. The reversal of this process – from
privatisation and to commons – is in part a struggle over software
values and the dignity of hackers, suggesting that we may
understand the Free Software struggle as part of the beginning of
history (cf. De Angelis 2007)58.

58 As opposed to the neoliberal idea of the “end of history”.

212

Free Software as Property

As argued in Chapter 1, the work of the Free Software and
Culture movements' leading voices can all too easily be seen as
liberal apologias and as re-enforcing capitalism by providing
“free labour” (Terranova 2000) and “offer liberal and neoliberal
economics a refinement of its logic that does not significantly
break with its overall political rationality” (Terranova 2009). The
difference between resulting in a strengthening of capital or
resulting in the emergence of a new mode of production, so I
have argued in this essay, turns on a (mis-)conception of
property. In response I will now present Free Software as a
model for property.

Free Software, we may say, is an instance of neo-commoning that
shares tendencies with the traditional commons and the neo-
commons movement of the pirates, who hacked the transatlantic
network of commerce, causing “a crisis in the lucrative Atlantic
trade” (Rediker 2004: 9) during the Golden Age of Piracy, as
noted in the Introduction, through a self-organised defence
against - and alternative to - privatisation. Although Free
Software most certainly is a phenomenon of “our” culture, it
nevertheless constitutes novel forms of co-productive relations
that challenge existing conceptions of property. Indeed, the very
configuration of social relations with regard to software, or more
specifically computer code, that inheres in Free Software has
deliberately been shaped in an “other” way.

“We could not establish a community of freedom in
the land of proprietary software where each program
had its lord. We had to build a new land in
cyberspace--the free software GNU operating
system, which we started writing in 1984” (Stallman
2001a).

213

thecommoner :: issue 14 :: winter 2010

What sets Free Software apart from the culture within which it is
unfolding, in addition to the property relations novelty that I am
presenting here, is that it is built in “the new land” of cyberspace.
In this frontier land of opportunities – in the “liquid architecture”
of cyberspace - it was, and to some extent still is, possible to do
things in ways that differ significantly from conventional societal
forms. Cyberspace is a permissive space, although it is
increasingly enclosed, corporatised and regulated (as we saw in
Chapter 1). It has permitted the Free Software movement to
maintain its novel nature and grow into a successful global
project, which sustains its particular social relations, based on the
values of sharing and cooperating, with regard to the creation of
and care for software.

While the leading voices of the movement itself do not want to
understand Free Software as an instance of property, or a
configuration of property relations, it is most certainly, according
to the definition of property presented in this essay, an instance –
a very novel and interesting instance at that – of a particular
configuration of social relations with regard to things. The
“things” are software and as software pervades almost every
aspect of the world in which we live, embedded in all kinds of
devices - car engines and brakes, flight control systems,
ambulances, voting machines and of course your personal
computer and the Internet, which connects people world wide - it
is a very important set of social relations.

As already stated, understanding Free Software as an instance of
property might not – from a strategical or tactical point of view –
be useful for the Free Software Foundation and the movement it
facilitates. It might well be that the future development of the
Free Software movement's cause is better served by not
addressing issues of property at all, so as not to contradict the
basic interests of those corporations who profit substantially from

214

Free Software as Property

existing property relations in the tangible realm, particularly
sections of the IT industry, whose collaboration the Free
Software movement is in part dependent upon. In that sense I am
admittedly exploiting the phenomenon of Free Software as a case
study and a springboard to present not only a critique of private
property, but also present an alternative approach to property
configurations. However, I do think that the Free Software
Foundation and their political and intellectual fellow travellers in
the “Free Culture” movement are aiming too low. After all, their
movements have emerged in resistance to privatisation – and
they often make reference to enclosure of land and use anti-
privatisation rhetoric and arguments as well. As such I think they
are at best misguided and at worst misguiding their followers in
the struggle against privatisation, both generally and particularly
with regard to the struggle – and its viability - for Free Software
and “Free Culture” in the long term. Indeed, as argued in Chapter
1, without a substantive critique of ownership in the tangible
realm, the position of the Free Software and Free Culture
movements remains a liberal apologia, thus harbouring an
internal contradiction where privatisation is opposed yet
supported in its most basic form, namely with regard to the
tangible means of production. Instead of rejecting property in the
intangible realm and thus implicitly supporting private property
in the tangible realm, the rhetorical power of property can be
made to work against privatisation. In other words, the power of
the “framing effect” (see Section 1.3.2) can be subverted. That is
one of the aims of this essay.

It is with these concerns in mind that in this chapter I will further
develop the case for Free Software as a novel and potentially
revolutionary instance of property.

Given that there potentially are “as many theories of property as
there have been systems of property rights...” and “...that the

215

thecommoner :: issue 14 :: winter 2010

institution of property has had its history and that that history has
not yet come to an end” (Schlatter 1951: 10), because “the
meaning of property is not constant...” and the “...actual
institution, and the way people see it, and hence the meaning
they give to the word, all change over time” (Macpherson 1978:
1), Free Software, as a case study in property relations, is
interesting. It is interesting because it forces us to see property
relations in a new perspective, from the perspective of the
particular social relations that characterise Free Software, and
because it shows that social relations and care for and
development of goods and resources can be successfully
organised collectively and autonomously. In turn, the insights
derived from such a conceptualisation can be used to strengthen
critiques of property relations in the context of the tangible
means of production and land, especially because the process of
understanding Free Software as property recursively becomes a
process of understanding property in a new way. It is not because
Free Software needs property as such, rather property needs Free
Software. However, a weakened private property regime is a
weakened threat of enclosure: that is the central point that the
Free Software movement is missing when they reject property as
a useful means of social organisation.

Finally, it is also very relevant to note that “property concepts do
not change without an incipient or fundamental change in the
nature of the society itself” (Schurmann 1956: 507). If, then, we
consider the widely accepted idea that things are changing
fundamentally, that we are living on a trajectory toward a
globalised village, or in a networked information society and a
knowledge based economy; and if we keep in mind that profound
societal changes in the past went hand in hand with the advent of
new configurations of property relations, such as in the transition
into capitalism, then Free Software understood as property has
implications far beyond software.

216

Free Software as Property

However, before turning to these matters it will be necessary to
introduce the “nature of code”, because it is crucial to understand
just how software works in order to fully grasp the significance
of the Free Software principles and why the movement has
emerged and grown to be so successful. That will be the task in
the following section.

Upon explaining the nature of code in Section 3.2, I will present,
in Section 3.3, the history and background of the Free Software
movement and make a few notes on its growing economic and
cultural significance59. In Section 3.4 I briefly present the concept
of a “recursive public”, before turning, in Section 3.5, to the
software license at the centre of it all, namely the GNU General
Public License. The GPL, as it is commonly known, will be
explained in detail and with reference to copyright law and its
inherent and central element of reciprocity in perpetuity. I will
also offer an insight based on architectural metaphors in a
political context (Pullan 2004), where the GPL is understood not
merely as a software license, but also as a constitution of the Free
Software community, which is a growing voluntary association
of hackers, software developers, policy makers, politicians,
activists, lobbyists that act within global civil society in the
interest and for the promotion of Free Software and Free Culture
in general.

Section 3.6 addresses the ways in which the Free Software
movement as a recursive public has organised its own defences
against violations of their self-legislative boundaries.

59 Unfortunately the political economy of Free Software is largely beyond the
scope of this essay. In a previous draft of the PhD thesis, the political
economy constituted half the work, but I developed a focus on property
relations instead, because it was absent from the literature.

217

thecommoner :: issue 14 :: winter 2010

Let us now take a look at the nature of code.

3.2 The nature of code.

In order to understand the social, ethical, political and cultural
significance of Free Software it is necessary to understand the
technical foundations of software in general. That is what I call
the nature of code and it involves also understanding how
hardware - without which software is meaningless, useless and
indeed impossible – works.

Computer hardware only understands binary code. Binary code
consist of zeros and ones, referring to whether a switch is OFF
(zero) or whether it is ON (one), because at the most basic level a
computer is “only” a collection of switches that still largely
operate on the principles defined by John von Neuman (1945) in
“First Draft of a Report on the EDVAC”. Essentially, the Central
Processing Unit (CPU) found in computers – and many other
gadgets nowadays – is simply zillions of switches squeezed into
an incredibly small space.

Binary notation is not very easy for human beings to handle and
that is why programming languages are crucial for the
development of software, just as human (natural) languages are
crucial for a conversation. Were we to communicate by way of,
say, Morse coding with our eye lids our communicative capacity
would be greatly limited, although, of course, should we lose the
power of speech such communication would be very useful. In
the same way, some very special software is sometimes written
directly in binary code for specific purposes on a “low level” by
specialised experts. This is the exception that proves the rule.

218

Free Software as Property

At the lowest level, then, computer code is binary, which is also
called “object code”, but for most programming purposes, in
practice, it is not possible to write in binary form. A
programming language partly solves this problem by allowing
for a semantic abstraction away from this lowest, binary or object
code level. Computer programming languages include algorithms
and types, variables, and values ordered in so-called libraries (or
collections), mainly derived from mathematics and rather far
from the level of object code. The following table illustrates in
simple terms the principle difference between these levels:

Binary Hexadecimal Assembly
language

Instruction description

01111011 7B MOV, A, E Move contents of register
A to register E

Illustration 7: Code and abstraction.

It is much easier for a human mind to write “MOV”, “A” and
“E” when wanting to move the contents of register A to register
E, and it is much easier to remember that function in those terms
than it is to remember that the binary string “01111011” instructs
the computer to do so60.

60 It should for good measure be noted that this illustration and its explanation
do not actually include a high-level programming language example, but
merely illustrates the principle of abstraction and the relations and
usefulness for the human mind of using such abstraction. Assembly
language, as a matter of fact, corresponds “one-to-one” (or directly) to the
binary notation level, whereas in higher level languages a few words can
compile to many more binary (object code) instructions. As such this
illustrates the concept of abstraction towards natural language, but not the

219

thecommoner :: issue 14 :: winter 2010

Using a programming language only partly solves the problem of
the difference between source and object code for the obvious
reason that the source code still needs to be translated into object
code.

Conceptually speaking there are generally two main forms of
translating code into its binary destination. The semantically
higher level of a given piece of code can be translated either by
means of interpretation, which means that another programme
sits as a translator between the programme and the hardware
while the programme is running, that is when a user is executing
it. The interpretation approach makes for a slow running
programme, but might be a preferred option for testing and
experimenting with code during development.

A faster option is compilation, which is done by a compiler. It is
faster in terms of running the programme, once compiled, but it
takes considerable time to translate or compile a programme. A
compiler is itself a programme or set of programmes, which
translates a given source code into object code, according to the
specified environment. Once source code has been compiled into
binary object code it cannot be translated back into its source
code origins. Generally, software (whether Free or non-free) is
distributed in binary form, because it is only in that form that it
can be run (executed, as it were) on a computer. Thus, most
commonly, when you download a computer programme, such as
the Firefox web browser, it is in a binary form.

What distinguishes Free Software from non-free software is that
the source code of Free Software programmes, although

complexity that programming languages actually entail. I provide an
example of high-level programming language below.

220

Free Software as Property

distributed in binary, compiled form, is always made available
for the public. Exactly how this works will become clear
throughout the rest of the chapter.

Let us take a look at an example of a source code segment.

The excerpt (on the following page) is an example of code from
the Linux kernel, which is a famous Free Software project. The
text between the demarcations /* and */ are comments. The
demarcations, tell the compiler to ignore whatever comments are
written between them during its process of translating source
code into object code (or binary form). The comments are needed
for humans to better understand what the code does; what the
intention of the programmer was; when and why s/he wrote it;
and what ever else s/he might want to share. In this case it also
includes contact information:

221

thecommoner :: issue 14 :: winter 2010

/* Tell the user who may be running in X and not see the console that we
have panic’ed. This is to distinguish panics from “real” lockups. Could in
theory send the panic message as morse, but that is left as an exercise for the
reader. And now it’s done! LED and speaker morse code by Andrew
Rodland <arodland@noln.com>, with improvements based on suggestions
from linux@horizon.com and a host of others.*/

void panic_blink(char *buf)
{
static unsigned long next_jiffie = 0;
static char * bufpos = 0;
static unsigned char morse = 0;
static char state = 1;

if (!blink_setting)
return;

if (!buf)
buf=”Panic lost?”;

if (bufpos && time_after (next_jiffie, jiffies)) { return; /* Waiting for
something. */

Illustration 8: C source code

In this example, written in the high-level programming language
C, we learn that someone has contributed to the kernel code by
equipping it with a morsing mechanism so that the kernel can
send messages to the user during extreme “panics” through
LED’s and the system speaker. If the kernel panics the user is
likely to experience what is generally called a crash: your
computer freezes, the input devices, such as mouse and
keyboard, no longer function and you might have to reboot via
the reset button, potentially causing data loss or perhaps even
hardware damage.

222

Free Software as Property

Comments are important because code can sometimes be
difficult to understand even for proficient programmers. In other
words, ‘ideas’ in software are contained both in the actual code
and in the complementary comments in which the code is
wrapped; together they form what we refer to as source code.
Commenting is an elementary aspect of creating software; and
comments are absolutely essential for the modification of code in
a complex system, which might need to be adapted to local
purposes or expanded to work with novel or with more devices
than initially imagined (or available).

The source code hence refers to both the composition of
algorithms and types, variables, and values and to the
commentary that the people creating and maintaining the source
code write as the code base of a programme evolves. During
compilation the comments are ignored and are thus not part of
the object code. They are lost. Although it is theoretically
possible to reverse engineer and replicate the functions of a
programme, by snooping on the data flows going in and out of
the programme, it is not possible to establish exactly how these
functions were implemented, by means of exactly what
algorithms and so on. Certainly the comments are lost entirely
and it is also possible to write and compile code in such a manner
that it is even more difficult to reverse engineer.

Access to the code, then, is necessary to understand any given
software programme fully, to customise it for local, specific
needs and to repair it.

Therefore, the functionality of complex systems (from a single
desktop computer to networked systems controlling nuclear
power stations, airports, trains and ambulances) can only be
analysed in depth if there is access to the source code of the
software that makes it run.

223

thecommoner :: issue 14 :: winter 2010

If this obvious need of access to source code in order to analyse
it is disregarded for whatever reason then we can speak of a
process of knowingly designing insecurity and creating a black
box technology. Software without access to the source code is a
product where a public peer-review is impossible and the
resulting software is non-free software61. It is, in part, for these
very reasons that the Free Software license, the GPL, stipulates
that all source code must be available to the public for scrutiny.

As software increasingly pervades all aspects of technology and
social life the question concerning access to the source code – or
not – is of increasing and alarming importance. The ubiquitous
presence and ever increasing importance of computers for all
kinds of social relations call for such public scrutiny options and
the accountability that Free Software makes possible and
advocates. Given the intimate relation between a computer and
human users further stresses the extreme importance of access to
the source code in order to facilitate public scrutiny and, in the
widest sense, to facilitate a democratisation of technology. If the
future of the networked information society is shaped by
technologies of which only a few corporate programmers, subject
to non-disclosure agreements, know the actual internal
functioning, the future of technology is a future of unnecessary
uncertainties, whereas if the networked information society's
underlying technology is based on Free Software and Free
Software derived principles of openness and freedom, then
uncertainties are kept at a minimum. That is why a social
movement for software freedom and reform of those intellectual
property laws that regulate software and other production of

61 Some quotes will be used in which non-free software is mistakenly labelled
non-proprietary software.

224

Free Software as Property

cultural artefacts has emerged and continues to grow and act in
the lobbies of public policy making institutions.

Let us take a look at this movement.

3.3 A brief history of Free Software and its imaginary,
scientific and cultural origins.

I want to first take note of the way in which computer science –
and software as such – is embedded in the scientific commons.
Software is not possible without the common scientific
knowledge upon which it rests. I will also suggest that the idea of
creating programmable devices has been part of the collective
imagination across eras and civilisations.

Moreover, as science and technology, as well as social science,
increasingly utilises software for modelling and calculating
matters, software becomes a crucial element in the advance of
science, technology and social science. In the same way as public
roads are needed for market relations, so is software needed for
many activities associated with public goods. In Section 3.3.2 the
specific history of the Free Software movement is briefly
presented.

3.3.1 Embedded in the scientific commons.

Computer science has a peculiar history, because it cannot be
separated from the (other) scientific traditions upon which it
rests. Computer science is at once connected to ancient history,
yet stands as a symbol of an advanced, high technology society.
In order to programme a computer – that is to write computer

225

thecommoner :: issue 14 :: winter 2010

code in a programming language, as already suggested above – it
is necessary to draw upon various of the principle branches of
mathematics for the purpose of logical reasoning and quantitative
calculation, as well as generating graphical representations of
what is being calculated. For instance, drawing a circle, or part of
one, on a computer screen involves knowledge and principles
that, as far as is known today, began to be established by
Sumerian mathematicians (3000 - 2300 BCE) and were perfected
by Pythagoras and his followers approximately 500 BCE. The
equation with which to calculate the circumference of a circle
(C=2πr) and its derivations are thus central to generating the
graphical representations that make your computer usable for
such things as browsing the Internet or, indeed, writing a thesis.

Computer science brings together a lot of established scientific
knowledge from different eras, cultures and traditions and,
recursively, as a tool for the advancement of most sciences,
whether natural or social, it feeds back into those scientific
systems (of thought). Most social scientific quantitative research
involves the use of computers and the design of human-computer
interfaces draws upon the social sciences and humanities.
Notable in this context is the pioneering work of Lucy Suchman
at Xerox's Palo Alto Research Center (1979-2000), collected in
“Plans and Situated Actions: The Problem of Human-machine
Communication” (1987) and Vernon Pratt's “Thinking Machines:
Evolution of Artificial Intelligence” (1987).

The history of programmable machines is surprisingly old.
During the Islamic Golden Age, al-Jazari (1136 - 1206)62, a
polymath, published a “Book of Knowledge of Ingenious

62 Full name: Abū al-'Iz Ibn Ismā'īl ibn al-Razāz al-Jazarī

226

Free Software as Property

Mechanical Devices”, with which modern application of science
to mechanics began to take form:

"We see for the first time in al-Jazari's work several
concepts important for both design and construction:
the lamination of timber to minimize warping, the
static balancing of wheels, the use of wooden
templates (a kind of pattern), the use of paper
models to establish designs, the calibration of
orifices, the grinding of the seats and plugs of valves
together with emery powder to obtain a watertight
fit, and the casting of metals in closed mold boxes
with sand" (Hill 1991: 64).

It was not only basic mechanical applications, however, that al-
Jazari championed. Noel Sharkey at University of Sheffield has
replicated one of al-Jazari's remarkable devices, speculating that
this might have been a programmable automaton, pre-dating
Leonardo's automaton, hitherto considered the first
programmable machine. One of the many amazing automata that
al-Jazari devised was “a boat with four automatic musicians that
floated on a lake to entertain guests at royal drinking parties. It
had two drummers, a harpist and a flautist”. The heart of
Sharkey's replica “is a rotating cylindrical beam with pegs (cams)
protruding from it. These just bump into little levers that operate
the percussion. The point of the model is to demonstrate that the
drummer can be made to play different rhythms and different
drum patterns if the pegs are moved around. In other words it is a
programmable drum machine” (University of Sheffield n.d.).

Particularly noteworthy, apart from the fact that the programming
of machines is nothing very new, is that the idea and the
imagination of programmable machines and automata go even
further back in history, stretching into ancient myths. The Greek

227

thecommoner :: issue 14 :: winter 2010

god Hephaestus, the “divine blacksmith, the artisan-god, the
demi-urge who has created admirable works and taught men the
mechanical arts”, from whom Prometheus stole the (technology
of) fire – and who created Pandora as humankind's punishment
for that theft - also devised programmable automata to assist in
his workshop. The box of evils and hope had been opened. Most
famously Hephaestus constructed and programmed Talos, the
giant “man” of bronze, a robot that is, “whose duty it was to
guard the Cretan tree and prevent its being approached”
(Aldington and Ames 1972: 126). It is curious to note that
Hephaestus was born as a cripple and thus did not possess the
full level of mobility that the other gods and the humans did. Was
that why he “naturally” became the god of creating things for
overcoming “human” limitations and replicating human capacity,
bringing at once evils and hope? At any rate, al-Jazari, we may
say, stood on the shoulders of Talos the giant when he created his
programmable automata and in turn figures like James Watt
(1736 – 1819) and Charles Babbage (1791 - 1871), the
conceptualiser of what can definitively be considered a
programmable computer, and Ada Lovelace (1815 - 1852), the
first “programmer” (of Babbage's non-existent machine), stood
on the shoulders of al-Jazari.

It is equally instructive to consider the work of Frances Yates. In
The Art of Memory (1966) and Theatre of the World (1969)
Yates traced the conceptual history of techniques and arts of
memory in the workings of the architectural, poetic, rhetorical,
theatrical and occult imaginations across cultures and time. She
thus provided an analytical narrative of (dis)continuities ranging
from the associative memory structuration of the Greek poet
Simonides, through the neo-platonic memory theatre of hermetic
philosopher Giulio Camillo and medieval cathedrals, to the
occult magic of Giordano Bruno, heralding the modern concept
of “scientific method”:

228

Free Software as Property

“It is a curious and significant fact that the art of
memory is known and discussed in the seventeenth
century not only by ... [those] ... still following the
Renaissance tradition, but also by the thinkers who
are turning in the new directions, by Francis Bacon,
by Descartes, by Leibniz. For in this century the art
of memory underwent yet another of its
transformations, turning from a method of
memorizing the encyclopaedia of knowledge, of
reflecting the world in memory, to an aid for
investigating the encyclopaedia and the world with
the object of discovering new knowledge. It is
fascinating to watch how, in the trends of the new
century, the art of memory survives as a factor in the
growth of scientific method” (Yates 1966: 355).

The history of the art of memory is a history of the concepts
without which it would not be possible to imagine the kind of
digital computers that we know today. Yates, in an astute aside,
notes that this history of storage, retrieval and manipulation of
information for the purpose of organising forms of and access to
knowledge might provide useful insights for the development of
the digital computer. Indeed. This is not only the case for the
internal workings of the digital computer, where data is stored
with reference to its storage location – similar to the associative
memory of Simonides – but also the conceptual order of the
graphical user interface, which for most practical purposes is the
way that most people know, recognise and use a digital computer.
The graphical user interface, like the art of memory, uses icons in
specific loci to refer to specific information and knowledge
stored elsewhere (beyond the visible field of the computer user).
This point was picked up on by Nicholas Negroponte (1995) and

229

thecommoner :: issue 14 :: winter 2010

later Peter Matussek (1999) in the context of the “invention” of
the graphical user interface of contemporary computers:

“This new interface put to new use an old insight of
the Roman rhetoric manuals – namely, that the
highest degree of mnemonic efficiency is exhibited
by techniques involving topographical arrangements
of mental images (loci et imagines). That the use of
image-based technology might have involved an
actual historical reprise in the computer age was
explicitly reflected already by the Architecture
Machine Group who developed the Spatial Data
Management System during the seventies.” (ibid.)

Software makes computers work. It controls the CPU and makes
communication possible between the various hardware entities
that make up a computer, but it also structures the graphical user
interface. As the term suggests an inter-face is a two way system:
accessing the underlying, lower level command structures and
machine instructions through pointing and clicking (and writing)
in the two-dimensional graphical interface and very importantly,
receiving the return of the requested computations shaped in that
very fashion. The interface thus structures both access to and
computed returns from the digital magic realm that only
specialist low level programmers could otherwise understand.
How we create this interface, the principles, known and
unknown, that are at play to quite some extent define the
boundaries of the novel epistemological terrain of cyberspace.
By extension, without access to the source code, the minds of
people in a “networked information society” are shaped by
black-box technologies: if there is no access to the source code,
we cannot know exactly how we are interfacing with our

230

Free Software as Property

computers, with cyberspace and with other people through digital
media63.

“Any time you engage with information, the reality
that you extract from that information is shaped by
the tools that deliver it. Microsoft's information
presentation is such a monoculture that it edits out a
lot of other realities. So you have a new kind of
monopoly that affects the way people think in ways
that are invisible to them. It's a very dangerous form
of monopoly, especially now that they are talking
about the "trusted computing" model, where it will
be very difficult for you to save and then pass on
documents on systems without identifying yourself
… That system is supposed to be designed to help
control digital rights management. By its nature it
will be great for political rights management,
because it's an enormously penetrative surveillance
tool, and it makes it hard to do anything
anonymously involving a computer. Here is a
monopoly in essence, the Wintel monopoly --
Windows/Intel -- which has enormous global power
and which no government is willing to stand up to,
at least effectively, so far” (Barlow in Doherty
2004).

63 Beyond the scope of this essay, these aspects of software and software
freedom might be related to Article 19 of the Universal Declaration of
Human Rights (and related declared rights of the freedom of thought and
communication): “Everyone has the right to freedom of opinion and
expression; this right includes freedom to hold opinions without
interference and to seek, receive and impart information and ideas through
any media and regardless of frontiers.”

231

thecommoner :: issue 14 :: winter 2010

The problem of software as a black-box is not limited to the
graphical interface, of course, but even more so pertains to the
core of any given programme. The file sharing programme called
Kazaa, whose developers were later to create Skype, was a
Trojan Horse that once installed on your computer tracks your
computer use and Internet surfing habits for the purpose of
targeted advertising and collection of such data in general. The
code segments included in a programme for such purposes are
called Spyware or Malware. When uninstalled, Kazaa leaves the
Malware behind and a third-party programme called
“KazaaBegone” (Merijn n.d.) is required to purge your computer
of unwanted, snooping code. Skype also has functions that turn
your computer into a “super node” on the Skype network without
your knowledge, unless you have informed yourself and found
out how that can be avoided. Bev Harris, founder of
Blackboxvoting.org and author of “Black Box Voting: Ballot
Tampering in the 21st Century”, has done a lot of work to expose
the problems of software that cannot be scrutinised in public. In
particular, she has drawn attention to Diebold Election Systems,
a company with strong ties to powerful political factions.
Journalistic investigations have revealed what becomes possible
if democracy is processed through black box technology:

“Following the 2003 California election, an audit of
the company revealed that Diebold Election
Systems voting machines installed uncertified
software in all 17 counties using its equipment”
(Fitrakis 2004).

The inscrutability of the software system of these machines made
voters in the U.S dependent on “third-party” monitoring bodies:

232

Free Software as Property

“Like Ohio, the State of Maryland was disturbed by
the potential for massive electronic voter fraud. The
voters of that state were reassured when the state
hired SAIC to monitor Diebold’s system. SAIC’s
former CEO is Admiral Bill Owens. Owens served
as a military aide to both Vice President Dick
Cheney and former Defense Secretary Frank
Carlucci, who now works with George H.W. Bush at
the controversial Carlyle Group. Robert Gates,
former CIA Director and close friend of the Bush
family, also served on the SAIC Board” (ibid.).

This vicious cycle of technological fraud and control would be
severely minimised, or even eliminated, if the voting machines –
should they be necessary at all – were run on Free Software that
could be assessed by the public. In more general terms:

“Exclusive access to the how of storytelling lets a
storyteller monopolise the what ... [A] television
program or commercial holds us in its spell as much
through the magic of broadcasting technology as its
script. Whoever has power to get inside that magic
box has the power to write the story we end up
believing” (Rushkoff 2004: 21).

Computer science through its application as information
technology today is central to the workings of many scientific
disciplines, social organisation and leisurely pleasures. On that
basis there is a good ethical and social case to be made for Free
Software based implementations, rather than black-box
technologies. Keeping the knowledge and science behind one of
contemporary times most central technologies as business secrets
seems to me to be a dangerous route for knowledge and

233

thecommoner :: issue 14 :: winter 2010

development. Especially taking into consideration that there are
good claims and arguments that Free Software develops faster
and is more versatile than its counter-intuitive counterpart, non-
free software. Moreover, with importance far beyond software,
Free Software is a paradigmatic case of getting “inside that
magic box” and thus begin revealing the technological
foundations of the global village.

3.3.2 A brief history of the Free Software movement's
resistance to privatisation.

The history of digital computing in recent decades has been well
documented (Ceruzzi 2003 is a good starting point) and the
history of Free Software and hackers has been the topic of
historical investigation from the early days (e.g. Levy 1984).

The software commons, as we may call the hackers' community,
enjoyed a glorious, but relatively brief initial period of success.

“When I started working at the MIT Artificial
Intelligence Lab in 1971, I became part of a
software-sharing community that had existed for
many years. Sharing of software was not limited to
our particular community; it is as old as computers,
just as sharing of recipes is as old as cooking. But
we did it more than most … We did not call our
software “free software”, because that term did not
yet exist; but that is what it was. Whenever people
from another university or a company wanted to
port and use a program, we gladly let them. If you
saw someone using an unfamiliar and interesting
program, you could always ask to see the source

234

Free Software as Property

code, so that you could read it, change it, or
cannibalize parts of it to make a new program”
(Stallman 1998).

However, in 1976 William Henry Gates the Third publicly began
his project to enclose software and being a corporate lawyer's son
with a keen sense of business and the capacity to speak in public
policy lobbies, Bill Gates as he is commonly known, was to
become very successful at that. His “Open Letter to Hobbyists”,
dated February 3 that year, addressed the community of
computer hobbyists who were copying and sharing software in
order to be able to use their computers for fun and for a wide
variety of projects. By calling this practice of sharing theft and
those practising it thieves, combined with lobbying for
extensions of so-called Intellectual Property Rights law to
include software, Gates divided and conquered the emerging
culture of computer use so successfully that on that basis he was
to become the richest man in the world (Mames and Andrews
1994). In the early 1980s one hacker felt that privatisation was so
severely threatening the hacker community of sharing and
cooperating that action had to be taken. This man was Richard
M. Stallman, who later became the founder of the Free Software
Foundation (and thereby of the Free Software movement).
Stallman is the author of the GNU Manifesto (1985) and the
GNU General Public License (1989) and he here describes a
moment of significance in the process of enclosure of hacker
culture:

“The situation changed drastically in the early 1980s
… The AI lab hacker community ... collapsed … In
1981, the spin-off company Symbolics had hired
away nearly all of the hackers from the AI lab, and
the depopulated community was unable to maintain
itself … The modern computers of the era, such as

235

thecommoner :: issue 14 :: winter 2010

the VAX or the 68020, had their own operating
systems, but none of them were free software: you
had to sign a nondisclosure agreement even to get
an executable copy. This meant that the first step in
using a computer was to promise not to help your
neighbor. A cooperating community was forbidden.
The rule made by the owners of proprietary software
was, “If you share with your neighbor, you are a
pirate. If you want any changes, beg us to make
them.”” (Stallman 1998).

The social values of sharing and cooperating had – without
articulation – governed the software commons of the hackers.
Stallman was very perceptive of exactly that; and the experience
of the loss of the community that was sharing those values was
what drove him to recreate a community where these values
could thrive. This time they were to be (legally) articulated in
order to clearly define that community and its boundaries. Like
the Magna Carta and the Charter of the Forests articulated
already existing and, by the commoners, practised values once
they came under threat, so did the GNU General Public License
(GPL) articulate the already existing and practised values of the
hacker community. It is in precisely this sense that I suggestively
call the Free Software movement a community of neo-
commoners, because it opposes the powers of privatisation and
enclosure.

“The basic idea of the free software movement is
that nobody should have such power over anyone
else. Users deserve freedom, so software should be
free. Thus, proprietary software is something worse
than an inconvenience. Proprietary software is a
social problem, and our aim is to put an end to it.
Free software is sometimes more powerful and

236

Free Software as Property

reliable, but what concerns us most is that it is a
more ethical way to distribute software” (Stallman
in Biancuzzi 2009).

Stallman's project was to create a free operating system, written
from scratch, and protected in such as way that it could never be
enclosed. This “new land in cyberspace--the free software GNU
operating system” (Stallman 2001a) was the beginning of a
remarkable history. The idea was to create a UNIX-like system.
With the same architecture and based on the same principles, but
without code that was exclusively owned. In 1987 Stallman
released the first version of the GNU C compiler. C is a
programming language and the GNU C compiler, obviously, can
compile C source code into binary code. A compiler is necessary
to create all the other programmes that make up a complete
operating system and as such the GNU C Compiler was a
milestone in the process towards an entirely free operating
system. The GNU C Compiler has since been greatly extended
and is now known as the GNU Compiler Collection, thus
maintaining the same acronym: gcc.

Until the 1990s, however, the GNU operating system still lacked
a so-called kernel, which is the core of an operating system,
which acts as a mediator between programmes (or applications)
and the hardware level of the computer. The Free Software
Foundation's attempt to write a kernel for GNU, called GNU
Hurd, has been wrought with difficulties and has never
materialised in a form that has been widely used. Things changed
for GNU in spring 1991 when Linus Torvalds, a keen Finnish
student interested in computers, began writing a kernel that he
called Linux. Soon thousands of people joined him in developing
the Linux kernel – and as his code was released under the GPL,
a whole community rapidly grew around it. Torvalds here
describes the initial conditions:

237

thecommoner :: issue 14 :: winter 2010

“I had taken a course in UNIX and C, the fall
semester before. The first time I actually touched
UNIX was fall 1990, when I had a UNIX course at
Helsinki University. Actually, it was the first UNIX
course they ever had at Helsinki University, because
it used to be a VAX and VMS place. They had just
gotten a UNIX machine for trying out that
newfangled thing, and it turned out to be a huge
success. Within a few years, they had switched over
everything to UNIX. But that first machine was
used for this small course in UNIX and C, and I
immediately felt that this was what I wanted to
have. It made sense. Then when I bought a PC, I
wanted UNIX on it, and the rest is kind of history”
(Torvalds in Richardson 1999).

The history has been tremendously successful. The combination
of the incomplete GNU operating system, especially the GNU C
Compiler, and the Linux kernel, compiled by the GNU C
Compiler, became the GNU/Linux operating system, which is
now widely used in a wide variety of so-called distributions and
by millions of people and many large companies around the
world.

A distribution is an operating system: a collection of thousands of
libraries and applications put together by companies for profit or
by voluntary associations for the greater good. There are
hundreds of GNU/Linux distributions available for free
download on the Internet64. In 1995 the Apache (“a patchy”) web
server, named after the many patches contributed by a

64 The best overview is provided by http://distrowatch.com/

238

Free Software as Property

geographically widely dispersed community, was released under
a GPL inspired and compatible license, called the Apache
License. The Apache web server has been the most popular web
server since 1996 and is currently, November 2009, run on
55.32% of the world's web servers. It is followed by Microsoft
server products, which maintain 18.98% of the market share of
active web servers (Netcraft 2009a).

Then came a wide variety of freely available web oriented
scripting and programming languages that extended functionality
of existing web building tools and made it possible to build very
complex sites. Fused in the way that a distribution is, entire
Content Management Systems (CMS) began to emerge, for
instance Drupal, released under the GPL in 2001. In November
2009, the White House moved its website to a Drupal CMS as
part of its promotion and support of Free Software (Netcraft
2009b). With these Free Software tools it has been possible for
years now to build an entire web server and complex web sites
based entirely on Free Software. Likewise, it is possible to surf
the web, write texts, create and modify images, and a thousand
other things on a computer run entirely on Free Software.
Commerce built on Free Software is by now a multi-billion
dollar industry, led by IBM. Many companies are developing
Free Software around which they have created a portfolio of
services, such as support, as a business model.

It is the principled stance of the Free Software Foundation that
has made this possible, because the Free Software “ecology” has
grown due to the protection measures articulated in the GNU
General Public License. The GPL defines a defence against
enclosure, as we shall see below.

However, as is common in social movements, it came to political
differences over these principles of defence. Some key players in

239

thecommoner :: issue 14 :: winter 2010

the Free Software movement did not want to be neo-commoners
with social and political aims, but merely wanted to derive an
engineering methodology from the principles of Free Software.
On these grounds the Free Software movement in the late 1990s
split in two.

Within the movement a faction had emerged that did not consider
the social and political aims of Free Software as important,
indeed they considered the principled stance of the Free Software
Foundation as a hindrance to marketing Free Software to the IT
industry. What they wanted to promote was merely the concept
of open access to source code, thus limiting their focus to the
engineering methodology of Free Software. It gave rise to the
establishment of the Open Source Initiative (OSI), which
“respect the four freedoms [that define Free Software, as we shall
see below] but they don't defend the four freedoms” (Stallman
2007). While the Free Software movement is based on a socio-
political principle articulated in the GPL, the OSI only promotes
a method of development. In great part the OSI “business
people” based their initiative on a rejection of the term “free”,
which they considered harmful for the acceptance in the business
world of Free Software. This limitation is also recognised by the
Free Software Foundation, but they insist on the term, because of
the way in which it invokes the notion of right and refers to
rights discourses. A “free man” or “free woman” lives in a “free
society”, and a “free society” has “free software”.

“The term “free software” is prone to
misinterpretation: an unintended meaning, “software
you can get for zero price,” fits the term just as well
as the intended meaning, “software which gives the
user certain freedoms.” We address this problem by
publishing the definition of free software, and by
saying “Think of ‘free speech,’ not ‘free beer.’” This

240

Free Software as Property

is not a perfect solution; it cannot completely
eliminate the problem. An unambiguous and correct
term would be better, if it didn't present other
problems … Every proposed replacement for “free
software” has some kind of semantic problem—and
this includes “open source software” (Stallman
2007).

The visions of freedom were always integral to the Free Software
movement:

“I designed the GNU GPL to uphold and defend the
freedoms that define free software--to use the words
of 1776, it establishes them as inalienable rights for
programs released under the GPL. It ensures that
you have the freedom to study, change, and
redistribute the program, by saying that nobody is
authorized to take these freedoms away from you by
redistributing the program under a restrictive
license” (Stallman 2001a).

Stallman had explicitly been using rights language and libertarian
philosophy in the (U.S.) American way as a means to protect the
fragments of the hacker community, a voluntary association of
individuals exercising their freedoms of speech and assembly,
which by the early 1980s began to feel the effect of primitive
accumulation or market expansion. The customs of the hacker
community were under threat by privatisation and in this way the
Free Software movement is a social movement that share history
with other social movements to secure civil liberties to protect
existing customary, communal practices. The GPL “enshrine[s] a
sort of customary law or act as a declaration of customs within
hackerdom” as socio-legal scholar Maureen O'Sullivan puts it,

241

thecommoner :: issue 14 :: winter 2010

and the “...preamble of the GNU GPL, in particular, employs a
style of language richly reminiscent of the often countered “We
the People...” sections from the constitutions of many nations”
(2005).

Bruce Perens is one of the co-founders of the Open Source
Initiative, together with Eric Raymond. Perens is a key Free
Software programmer and is the author of the Debian Social
Contract and Debian Free Software Guidelines65 upon which the
Open Source Definition is based, and which he co-wrote. Not
long after articulating it, Perens realised that the enhanced
marketability and commercial palatability gained by discarding
the term Free - and thus the reference to and socio-political
struggle for principled (software) freedom – came at the cost of
the protection of the values upon which the Free Software
Foundation stood strong. In 1999, “around a year” after the split
created by the Open Source Initiative, Perens posted an often
quoted email with the title “It's Time to Talk About Free
Software Again”, in which he stated that:

“Open Source has de-emphasized the importance of
the freedoms involved in Free Software. It's time for
us to fix that. We must make it clear to the world
that those freedoms are still important, and that
software such as Linux would not be around without
them ... Sadly, as I've tended toward promotion of
Free Software rather than Open Source, Eric
Raymond seems to be losing his free software focus.
The Open Source certification mark has already
been abused in ways I find unconscionable and that

65 Two important Free Software manifestos, which helped define the
movement by declaring certain principles, terms and aims.

242

Free Software as Property

I will not abide. I fear that the Open Source
Initiative is drifting away from the Free Software
values with which we originally created it” (1999).

However, the phenomenon of Free Software is now best known
to people by the name of Open Source, which hides the social
and political aspects of freedom from view. We can of course
never know how far the Free Software movement would have
reached into the public imagination without the marketing trick
of the Open Source business people.

Linus Torvalds whose project has benefited very well from the
principles of Free Software - “[m]aking Linux GPL'd was
definitely the best thing I ever did” (Torvalds n.d.) - as a paradox
stands as the opposing voice to Stallman's ideological voice.
Torvalds is “absolutely uninterested in politics” (Torvalds in
Richardson 1999). OSI co-founder Eric Raymond is even more
explicit:

“[I]n the battle we are fighting now, ideology is just
a handicap. We need to be making arguments based
on economics and development processes and
expected return” (Raymond 1998).

Promoting an engineering standard on the basis of economic
short-term incentives stands in strong contrast to the long-term
social goals of Free Software. Time and again Stallman, in
essays, interviews and talks, raises awareness of this crucial
distinction. In his essay “The GNU GPL and the American Way”
he states:

243

thecommoner :: issue 14 :: winter 2010

“The Open Source Movement, which was launched
in 1998, aims to develop powerful, reliable software
and improved technology, by inviting the public to
collaborate in software development. Many
developers in that movement use the GNU GPL,
and they are welcome to use it. But the ideas and
logic of the GPL cannot be found in the Open
Source Movement. They stem from the deeper goals
and values of the Free Software Movement. The
Free Software Movement was founded in 1984, but
its inspiration comes from the ideals of 1776:
freedom, community, and voluntary cooperation.
This is what leads to free enterprise, to free speech,
and to free software” (Stallman 2001a).

Reflecting expressly the view on Free Software that I am
outlining here, Stallman, in “Why Open Source misses the point
of Free Software”, writes:

“Nearly all open source software is free software.
The two terms describe almost the same category of
software, but they stand for views based on
fundamentally different values. Open source is a
development methodology; free software is a social
movement. For the free software movement, free
software is an ethical imperative, because only free
software respects the users' freedom. By contrast,
the philosophy of open source considers issues in
terms of how to make software “better”—in a
practical sense only. It says that non-free software is
an inferior solution to the practical problem at hand.
For the free software movement, however, non-free

244

Free Software as Property

software is a social problem, and the solution is to
stop using it and move to free software” (Stallman
2007)

Students of social movements will be familiar with this kind of
split. In “conventional” social movements this split is often,
colloquially, explained in superficial terms as the difference
between “revolution” and ·reform”. In a “Strategy for Labour”,
Andre Gorz (1964), made a distinction between (a) reformist
reforms that strengthen the underlying logic, institutions and
legitimacy of prevailing power relations, and (b) non-reformist
reforms that undermine the logic, institutions and legitimacy of
power, thus opening possibilities of deeper change. Gorz's
distinction helps explain the difference between Free Software
and Open Source: the former is a social and political movement
that seeks to “undermine the logic, institutions and legitimacy of
power” by advocating fundamental reform of mainly copyright
and patent law. The latter is a trademark for a network of
programmers, who prefer and consider superior software which
provides access to the source code without addressing the
“underlying logic, institutions and legitimacy of prevailing power
relations”. If the Free Software commons is disembodied, as I
argue, then Open Source is no commons at all.

Despite these differences in policy – one faction being somewhat
stripped of social and political values – the two sides continue to
work with a shared aim: the advance of software with access to
the source code. Open Source is a concept that has been adopted
by large sectors of the IT industry and beyond the world of
software, while Free Software principles and politics continue to
influence a wide variety of activities, equally not limited to
software.

245

thecommoner :: issue 14 :: winter 2010

However, it is not a synergistic relationship only. Deviation from
the original principles has given rise to a proliferation of licenses
that are making it difficult for developers and businesses to
decide on a particular license. When licenses are not entirely
compatible with one another it does not strengthen the original
Free Software based software commons, but establishes several
software commons. Perens has long since realised that he made
mistakes, not only when promoting Open Source over Free
Software, but particularly in the context of the proliferation of
licenses contingent upon splits in the movement:

“[T]he fact that there are 73 licenses is a problem.
Many of those licenses are incompatible with each
other. To understand the legal implications of
mixing software under two of those licenses
together in the same program, you'd have to learn
5256 different combinations! … And the worst thing
about this is, it's my fault! Well, partially. When I
wrote the rules for Open Source licensing in 1997,
as a policy document of the Debian project, not
many people took what we then called “Free
Software” seriously, and it was unthinkable that 73
different licenses that complied with my Open
Source Definition would ever be written” (Perens
2009)

The complexity that Perens here points to and the subtle – or not
– differences between the respective licenses are beyond the
scope of this essay; indeed, undertaking such as task as to map
out these differences would require an essay of its own. We must
maintain a focus on Free Software in broader philosophical
terms, rather than a specialised, detailed analysis of licenses.
However, it is necessary to be aware of these differences in

246

Free Software as Property

general terms. This figure shows in a simple way the complexity
arising from different categories of software (FSF 1996):

Illustration 9: Software categories

Apart from providing an overview of the complexity of
categories of software, this figure also shows us, as Stallman
noted above, that software released under the GPL falls within
the category “Open Source”. Because the most widely used
license is the GPL and because one of the most famous Open
Source projects, namely the Linux kernel, is released under the
GPL, the political division between Free Software and Open
Source is even more complex than suggested above by Stallman
and the relation between these factions reveals a peculiar aspect.
While the Open Source movement tends to depoliticise Free
Software, the most commonly used Open Source license is the
GPL, which remains unaltered and thus, essentially, in a stealthy
manner, we may say, still advances the cause of the Free

247

thecommoner :: issue 14 :: winter 2010

Software movement. In a sense, the de-politicisation – insofar as
an Open Source project, which most do, choose the GPL as a
license - remains superficial. That is because the principles are
enshrined in the license and the associated code will always be
accessible for Free Software commoners. An Open Source
project released under the GPL remains a vehicle of Free
Software principles and the code that it contains enters the
structured, Free Software commons, but these underlying
principles of freedom are hidden from view when the majority of
users - and the public in general - only recognises the given piece
of software as “open” and not “free”.

This historical outline with a view to certain underlying social
and political principles does little justice to the rich history of a
fast growing movement, but it should provide the reader with
sufficient knowledge required to understand the specificities of
the Free Software phenomenon and the software license that
articulate the movement's social values, particularly in the
context of copyright and property relations, to which I turn in
Section 3.5. Before a presentation and analysis of the GPL,
however, I want to further contextualise Free Software in socio-
political and cultural terms. I do so by way of the concept of a
“recursive public”.

3.4 The Free Software movement as a recursive public.

Christopher Kelty (2008) has conceptualised the phenomenon of
Free Software and the cultural significance of Free Software in
terms of his concept of a “recursive public”. The choice of the
term recursive is obvious in the context of software, because the
concept of recursion is a basic and very central aspect of
computer programming. In other sciences it is also, relatedly,

248

Free Software as Property

known as a “feedback loop”, which in simple terms means that
the output of a process becomes an input into that same (on-
going) process. Recursion separates simple programmable
devices from what we know as digital computers. It is a term and
concept that is central to the imaginary of hackers and formed the
basis for the naming of the GNU operating system: GNU is a
recursive acronym that means “GNU's Not Unix”. In this case it
is a humorous wordplay typical of the hacker community, but
Kelty takes it to a serious social scientific level in his conception
of the Free Software community as a “recursive public”.
Likewise, I used the concept of recursion, in the Introduction and
Chapter 1, to argue that the tangible/intangible divide as a
fundamentally distinguishing factor in the configuration of
property relations is misleading, because there is a recursive
relation between goods and resources in these respective realms.

One of the first steps that Kelty makes in his narrative is to
clarify the relation between Free Software and the Internet,
which is also recursive, as already suggested above:

“The Internet is a unique platform - an environment
or an infrastructure - for Free Software. But the
Internet looks the way it does because of Free
Software. Free Software and the Internet are related
like figure and ground or like system and
environment; neither are stable or unchanging in
and of themselves, and there are a number of
practical, technical, and historical places where the
two are essentially indistinguishable” (Kelty 2008:
4).

The visions of freedom of information, speech and circulation of
knowledge that are intrinsic to the Free Software movement were
also clearly in the mind of Tim Berners-Lee when he developed

249

thecommoner :: issue 14 :: winter 2010

the Hyper Text Transfer Protocol, which is the technical aspect of
the World Wide Web and which, together with email, have come
to define the Internet. Berners-Lee imagined that the World Wide
Web could connect all computers in the world and so provide
access to all information in digital existence. Providing the tools
for access and providing free and open access to the scrutiny of
such tools was central to his vision (Berners-Lee 1999) – and
reflected the utopian visions of technology that have been central
to social movements in cyberspace for decades (Turner 2006).

Although the Free Software Foundation existed before the World
Wide Web, it only grew slowly, in part because the programmes
that they distributed were on recorded magnetic tapes that were
sent with conventional mail companies; and it is with the
circulation of the programmes, and the sharing of code, that the
values of the community are perpetuated and thus that the
community grows. However, these programmes and the vision of
sharing and cooperating behind them, helped give shape to the
Internet, which in turn provided a framework for distributing
Free Software more smoothly and infinitely faster. Offering code
on a website for download allows anyone, anywhere – who has
Internet access and the hard- and software required to do so - the
possibility to download the programme in question.

One dimension of the recursive nature of the Free Software
public can thus already be found in this relation. One of the
outputs of the Free Software movement in the early days were
the programmes that came to define what we know as the
Internet, and the Internet, in turn, became an important input in
the development of the Free Software movement. This is an
important relation that shows how openness and freedom
perpetuate themselves. They come around if they go around, so
to speak. It also shows how crucial Free Software - in practice
(through provision of software tools) and in theory (through

250

Free Software as Property

defining and perpetuating visions of freedom and openness) –
was and continues to be for the Internet and the World Wide
Web. In that respect the Free Software movement has been
actively creating the environment in which the movement thrives
and because it thrives it continually recreates and strengthens the
environment in which it exists. The output of the Free Software
movement becomes an input to the system – cyberspace - upon
which it is dependent. This is the technical aspect of Free
Software's recursive relation to its environment.

Free Software also has a recursive relation that is socio-political.
As a public the movement is recursive because it creates the
foundations for its own success, similar to how it continues to
create the technical foundations in which it thrives. Kelty writes:

“A recursive public is a public that is vitally
concerned with the material and practical
maintenance and modification of the technical,
legal, practical, and conceptual means of its own
existence as a public; it is a collective independent
of other forms of constituted power and is capable
of speaking to existing forms of power through the
production of actually existing alternatives” (2008:
3).

“Recursive publics are publics concerned with the
ability to build, control, modify, and maintain the
infrastructure that allows them to come into being in
the first place and which, in turn, constitutes their
everyday practical commitments and the identities
of the participants as creative and autonomous
individuals” (ibid: 7).

251

thecommoner :: issue 14 :: winter 2010

Two of the most important legal challenges for the Free Software
movement, with respect to the “institutional ecology” within
which that movement exists and has to survive, are copyright and
patent law (Benkler 2006; Frischmann 2007). I will, for brevity's
sake, leave aside the question of patent law, although the Free
Software movement in a variety of ways also contest existing
patent laws66, and only consider copyright law.

It is copyright law that has permitted the articulation of the GPL,
to which we turn below, and copyright law reform is one of the
main foci of the political lobby work of the Free Software
movement. They work to “modify” copyright law, but they also
seek to “maintain” it, because copyright law constitutes the legal
foundation upon which they rest as a movement. That Free
Software is based upon copyright law, yet seeks to reform
copyright law in accordance with the subversive way in which
the Free Software license, the GPL, is anchored in copyright law,
is an important aspect that is often misunderstood.

A recent political initiative can help illustrate how the Free
Software movement approaches the issue of copyright reform.
The Swedish Pirate Party, which is a political platform “to
legalise [non-commercial] internet file-sharing” and other
cyberspace customs and which gained 7.1% of the Swedish votes
and thus “won one of Sweden's 18 seats in the European
parliament” (Schofield 2009), has proposed a copyright reform
that would harm the cause of Free Software. It is somewhat
ironic that a party, which it would not be possible to imagine the

66 The Free Software Foundation works to exclude the realm of computer
software from patent law entirely. See for instance “Patent Reform Is Not
Enough” available online at http://www.gnu.org/philosophy/patent-reform-
is-not-enough.html and the “End Software Patents” campaign at
http://endsoftpatents.org/.

252

http://www.gnu.org/philosophy/patent-reform-is-not-enough.html

Free Software as Property

emergence of without the prior existence of the Free Software
movement, should propose reforms that would severely harm –
quite possibly entirely undermine – the work of the Free
Software movement. The harm consists of a radically shorter
copyright term, namely five years, after which a copyright
covered work would enter the public domain. As we shall see,
the GPL rests upon copyright law to protect against enclosure
and therefore that protection would be rendered useless after five
years, because source code in the public domain can be enclosed
in future software that is not Free Software. Because non-free
software does not reveal its source code – only the binary
programme is copyrighted – the source code of non-free software
would never enter the public domain anyway. What could legally
be shared non-commercially within copyright law reformed
according to the Pirate Party's proposal would only be the binary
programmes. However, this completely overlooks the nature of
non-free software, which is not only protected by copyright, but
also by EULAs (End User License Agreements). The use of
EULAs would most likely exempt non-free software altogether
from any reforms to copyright law in any case. Furthermore, as
Stallman writes, non-free software could include a time bomb
that simple renders it unusable after five years, meaning that
nothing useful would enter the public domain:

“Thus, the Pirate Party's proposal would give
proprietary software developers the use of GPL-
covered source code after 5 years, but it would not
give free software developers the use of proprietary
source code, not after 5 years or even 50 years. The
Free World would get the bad, but not the good. The
difference between source code and object code and
the practice of using EULAs would give proprietary

253

thecommoner :: issue 14 :: winter 2010

software an effective exception from the general
rule of 5-year copyright — one that free software
does not share” (Stallman 2009).

It is for these reasons that the Free Software movement is vitally
concerned with the “practical maintenance and modification” of
copyright. Without copyright there can be no Free Software as
we know it. It is beyond the scope of this essay to investigate
further the details of copyright reform from the perspective of the
Free Software movement. However, this example shows that the
nature of Free Software is such that conventional approaches to
copyright law reform, such as reducing the term (before a
protected work enters the public domain, from which it can be
enclosed through inclusion into non-free future works), simply
no longer makes sense in the context of Free Software.

The Free Software movement's work to reform copyright and the
creation of Free Software as such are better understood as a
contribution to the democratisation of technology to which a
reform of copyright law is integral and necessary, but by no
means sufficient. Within the philosophy of technology Andrew
Feenberg has written on the democratisation of technology. He
states the need for this in a manner very relevant for the case of
Free Software:

“Technology is power in modern societies, a greater
power in many domains then the political system
itself. The masters of technical systems, corporate
and military leaders, physicians and engineers, have
far more control over the patterns of urban growth,
the design of dwellings and transportation systems,
the selection of innovations, our experience as

254

Free Software as Property

employees, patients, and consumers, than all the
electoral institutions of our society put together”
(1999: 131).

With such a powerful position in the everyday lives of people
and the way in which software is integral to most technology,
either in development, application or general use, we may
understand the work of the Free Software movement, conforming
a recursive public, as a contribution to the democratisation of
technology. Feenberg takes note of how technology is both a tool
for domination and a tool for liberation, and that its value is
determined both by the prevailing mindset in which it is
implemented, what Feenberg calls its “code”, and the ways in
which technologies are put to use.

“[T]he computer is neither good nor evil, but both.
By this I mean not merely that computers can be
used for either domination or democratization but
that they can evolve into very different technologies
under the influence of different strategies of
development” (Feenberg 2002: 91).

The ambiguity or ambivalence of technology
Feenberg presents like this:

“1. Conservation of hierarchy: social hierarchy can
generally be preserved and reproduced as new
technology is introduced. This principle explains the
extraordinary continuity of power in advanced
capitalist societies over the last several generations.
This continuity was made possible by technocratic
strategies of modernization, despite enormous
technical changes.

255

thecommoner :: issue 14 :: winter 2010

2. Subversive rationalization: new technology can
also be used to undermine the existing social
hierarchy or to force it to meet needs it has ignored.
This principle explains the technical initiatives that
sometimes accompany the strategies of structural
reform pursued by union, environmental, and other
social movements” (Feenberg 1998).

The work of the Free Software movement, we may therefore say,
is an example of “subversive rationalization” both with regard to
the technical dimension and with regard to socio-political
dimensions. The Free Software movement exhibits a recursive
relation with regard to not only the technical foundations –
cyberspace and software - but also with regard to the
institutional ecology. In the context of the legal aspect of the
institutional ecology, Free Software, as we shall see in Section
3.5 below, is dependent on copyright law, while at once working
actively in political lobbies to reform that very copyright law (as
well as lobbying to exempt software from patent law). The
recursive Free Software public, then, instantiates a process of
“subversive rationalization” of software technology and thus
contributes to a democratisation of technology led by civil
society.

Kelty has conceptualised the recursive phenomena of Free
Software and cultural derivatives in the wider Free Culture
movement in such a way that other social movements can learn
from the example. If some hackers with long beards can subvert
copyright law and transform the powerful software industry and
thereby set a precedent for a significant transformation of

256

Free Software as Property

societal relations, perhaps other movements can do so, too67.
Certainly for social scientists the concept of recursive publics can
be applied to other domains. Imagine, say, a definition of organic
food articulated by the permaculture movement68, a driving test
articulated by the Bicycology movement69, or, indeed, property
relations articulated by anti-capitalist movements. The example
of the Free Software movement – for the rest of global civil
society - stands as empirical evidence that it is possible to
organise your own social relations and articulate your own
property relations, that is to autonomously establish a community
through voluntary associations through a subversion of the
decision making authority that defines copyright as an instance
of private property.

67 There are many movements that are successfully contesting the value
measures of capital and changing their social relations with regard to things
in their struggles against market mechanisms, see for example “We Are
Everywhere” by the Notes from Nowhere Collective (2003). However, the
Free Software movement remains the only movement that has articulated its
values and social relations into legal language in such a manner that it has
been accepted in courts of law and thus is directly subversive of the existing
letter of the law .

68 The Permaculture Association writes: “The word 'permaculture' comes from
'permanent agriculture' and 'permanent culture' - it is about living lightly on
the planet, and making sure that we can sustain human activities for many
generations to come, in harmony with nature. Permanence is not about
everything staying the same. Its about stability, about deepening soils and
cleaner water, thriving communities in self-reliant regions, biodiverse
agriculture and social justice, peace and abundance”. Available at
http://www.permaculture.org.uk/knowledge-base/basics

69 “Bicycology is a cyclists' collective that offers a range of activities to
promote cycling and make links with wider issues of environmental and
social responsibility. We use our passion for cycling to pursue our vision of
a just and sustainable world through a combination of education,
entertainment and creative direct action”. Available at
http://www.bicycology.org.uk/

257

thecommoner :: issue 14 :: winter 2010

These organisational lessons provided by the example of Free
Software have been the subject of a paper by cyberspace
visionary Douglas Rushkoff, originally written for the London
think tank Demos:

“The emergence of the internet as a self-organising
community, its subsequent co-option by business
interests, the resulting collapse of the dot.com
pyramid and the more recent self-conscious revival
of interactive media's most participatory forums,
serve as a case study in the politics of renaissance.
The battle for control over new and little understood
communication technologies has rendered
transparent many of the agendas implicit in our
political and cultural narratives. Meanwhile, the
technologies themselves empower individuals to
take part in the creation of new narratives. Thus, in
an era when crass perversions of populism, and
exaggerated calls for national security, threaten the
very premises of representational democracy and
free discourse, interactive technologies offer us a
ray of hope for a renewed spirit of genuine civic
engagement” (2004: 16).

These are great promises. However, as we covered in Chapter 1,
the philosophical problems inherent in “information
exceptionalism” and their consequences for Free Software and
Free Culture politics result in a very important recursive relation
being absent, namely with the tangible realm. The Free Software
movement is “vitally concerned” with copyright reform and
abolition of software patents, but they are not vitally concerned
with substantial reforms of property relations in the tangible
realm, on the contrary. The material foundations of cyberspace –
and thus the realm in which software development takes place –

258

Free Software as Property

is certainly part of the infrastructure that allows Free Software to
come into being in the first place. Without a critical approach to
ownership in the tangible realm the Free Software movement
will remain vulnerable to enclosure led by those capital interests.

The most important commons is the commons of the land and the
tangible means of production and distribution. That is the shared
material reality of humanity from which all other possibilities
arise, whether tangible or intangible. The information commons
is a luxury, the icing on the cake. It is costly and it is precious
and has excelled in perpetuating the seemingly ubiquitous
propensity of human beings to engage in sharing and cooperation
when constraints are lifted. The liquid architecture of cyberspace
has facilitated these emergent processes very well. But the
proliferation of sharing and cooperating, which attracts so much
attention - from rent seekers and anti-capitalists alike – is not
confined to cyberspace, nor to the intangible realm.

The difference between tangible and intangible is not what
determines whether people share and cooperate. As we have seen
there is a long, rich history of commoning. Commoning is a
shared skill of humanity and not a skill that suddenly,
morphogenetically appeared on a global scale when the doors to
cyberspace were opened. Rather, cyberspace provided people
with a space that was not yet enclosed. There were few fences in
cyberspace, so sharing and cooperating was possible. It was
possible because the constraints of private property – present in
almost all other dimensions of life – were absent. Now they are
invading cyberspace, seeking rent and expansion of capital
interest. It is laudable to form a movement to strike back and
protect cyberspace, but a more reflexive approach would not stop
at the gates of the tangible realm. The threats of capital will not
go away as long as capital exists in its particular form. It will
return, it will continue to seek new ways of enclosure, which

259

thecommoner :: issue 14 :: winter 2010

suggests that it is necessary to address this problem of capital at
the most fundamental level, namely with regards to ownership.

Addressing merely the symptoms of avarice and capital
expansion in the intangible realm condemns Free Culture to an
eternal and defensive battle and separates Free Software and Free
Culture from the global movement of movements struggling to
take back the land and the means of production. Without
acknowledging and acting upon its recursive relationship to the
tangible realm, Free Software remains a virtual commons that is
detached from the struggles for real commons. Having witnessed
the phenomenal emergence of commoning in cyberspace – when
the constraints of private property were lifted – we can only
imagine what transformations the tangible realm would undergo
if constraints were lifted there. As I said above, the opposition
here is not tangible versus intangible, but private property versus
forms of property that facilitate collective creativity and self-
organisation.

Nevertheless, the achievements of the Free Software movement
are remarkable. It is in the GPL that these achievements are
manifest and in the following section this software license and
copyright reforming declaration of hacker values will be
explained in detail.

3.5 The GNU General Public License: copyright subversion
and constitution.

Contemporary literature addressing copyright law in the context
of software is replete with gaps, misunderstandings and
misleading statements with regard to Free Software and the GPL.

260

Free Software as Property

It will be instructive to briefly present a few of those
misunderstandings here.

3.5.1 Misunderstanding the GPL.

A frequent misunderstanding of Free Software is that it is placed
in the public domain. We can find this replicated in the third
edition of an Oxford University Press textbook on Intellectual
Property Law:

“[The Free Software movement] is dedicated to the
idea that code should be made publicly available
rather than protected by copyright law. For example
the Free Software Movement develops code and
places it in the public domain. It can be used by
anyone, with the proviso that they agree to the terms
of the General Public License, which dictates that
any improvement made to the software will be
similarly placed in the public domain” (Davis 2008:
75-76).

As we shall see in more detail later in this chapter, this is not
only misleading but false. The only correct statement in the quote
is that “[i]t can be used by anyone, with the proviso that they
agree to the terms of the General Public License”. Firstly, Free
Software is protected by copyright law, that is its very
foundation. Hence, secondly, Free Software is not at all placed in
the public domain. This is the genius of Free Software. Instead it
is protected from enclosure through a subversion of copyright
and that subversion is articulated in the GNU General Public
License (the GPL). The GPL is best understood as a set of sub-
clauses to copyright, hence it rests upon copyright law.

261

thecommoner :: issue 14 :: winter 2010

Turning to Pearson Longman's “Intellectual Property”, Seventh
Edition, we find a long, densely case referenced chapter on
copyright (Bainbridge 2009: 239-296), yet not one mention of
Free Software. The chapter begins:

“Copyright law has a history of development that
can partly be explained by reference to
technological change … The Copyright, Designs
and Patents Act 1988 was an attempt to keep abreast
of developments in technology coupled with an
intention to enact legislation that would take future
change in stride. Of particular concern was the
protection of computer programs and of other works
stored or transmitted in digital form” (ibid: 239).

If we look to another set of leading voices in the field, Bently &
Sherman's Intellectual Property Law textbook, we find no
mention of the phenomenon of the GPL in the second edition
(2004) at all, but in the current edition (2008) space has been
made for a mentioning. On page 266 a section is devoted to the
work of the Free Software Foundation, adding little to the debate.
It has to be noted that one of the greatest technological changes
in this context in contemporary times, namely the advent of the
Internet, which is built in great part with Free Software and
recursively has made the further success of the Free Software
movement possible, is hardly taken into account by the legal,
academic establishment.

In the following section, I present the GPL and its legal, and
above all property implications in more detail.

262

Free Software as Property

3.5.2 The GPL: just a software license?

The GNU General Public License (“the GPL”) is a software
license, which, as is also the case of non-free software licenses,
determines the conditions of distribution of a piece of software.
The GPL was first published in 1989. The GPLv2 was published
in 1991 and the process towards GPLv3 began officially with a
global gathering at MIT in January 2006, which has been
recorded, documented and discussed extensively, as has the
gatherings that followed: the Second International Conference on
GPLv3, which was combined with the 7º Fórum Internacional
Software Livre, took place April 19-22 in Porto Alegre, RS,
Brazil; the third happened in Barcelona, June 22-23; the fourth
took place in Bangalore, India, August 23-2; and the fifth took
place in Akihabara Tokyo, Japan, November 21-22, 2006. Each
of the conferences were organised by the local Free Software
groups and coordinated with the civil society of developers and
users. The process was coordinated by four committees, each
composed of “18 to 22 members who were chosen from vendor,
developer, hacker and open source communities” with a privilege
of the original author, Richard Stallman, who “would make the
final decisions on hot-button issues like digital rights
management (DRM). However, even with Stallman as the
ultimate decider in what stays and goes from the license he
created in 1989, committee members were optimistic that the
right issues are being addressed” (Loftus 2006).

The GPLv3 was finally published in June 2007, with a preamble
and 18 sections of legalese in more than 5000 words; it is
deliberately written for and within global civil society, rather
than for any specific national jurisdiction (an aspect to which I
return briefly below) and the GPLv3 is now the recommended
software license by the Free Software Foundation. But how -
exactly - does it work?

263

thecommoner :: issue 14 :: winter 2010

Software, like a book, a painting or a poem, is by default
copyrighted and the exclusive right to define distribution terms
belongs to the creator (unless s/he, like many academics, have
signed away their so-called “intellectual property” as part of
signing their employment contract). A software license is an
expression of the creator's specific conditions with respect to
distribution of the copyrighted software.

Copyright specifies the control powers and use privileges,
conferring on the author - and the author only - an exclusive set
of rights to: (i) reproduce or copy the copyrighted work; (ii)
prepare derivative works (modify the work); (iii) distribute
copies of the copyrighted work to the public by sale or other
transfer of ownership, rental, lease or lending; (iv) perform or
display the copyrighted work publicly. It is this articulation of
copyright that the Free Software movement aims to radically
reform and alter. As we shall see they have managed to do so
with quite some success.

The Free Software movement's creations, that is the software
they write and release, rest upon the provisions of copyright law,
because the GPL specifies what the copyright holder permits
others to do with a Free Software programme. The GPL is legally
speaking a set of sub-clauses to copyright. These sub-clauses are
articulated in such a way that they – at once – build on copyright
and also subvert the function of copyright. The Free Software
Foundation calls these sub-clauses “distribution terms” and they
specify certain freedoms that are provided to users, but also
specify certain conditions that the users are required to observe
and follow in order to enjoy the privileges of freedom. In writing
the GPL the Free Software community has constituted itself as
the relating-subject (A+C), classified (free) software as its

264

Free Software as Property

related-to object (B) and specified their relational modalities and
thus established a (software) commons.

3.5.3 Copyleft freedoms: reciprocity in perpetuity.

The general concept that is at play in the GPL's articulation of
sub-clauses to copyright, or distribution terms in extension of
copyright, has been labelled Copyleft. The articulation of the
GPL has spawned a variety of other Copyleft licenses, notably
those of the Creative Commons70, and as such the GPL is a
particular instance of Copyleft, which defines and articulates the
“four freedoms” of Free Software:

“To copyleft a program, we first state that it is
copyrighted; then we add distribution terms, which
are a legal instrument that gives everyone the rights
to use, modify, and redistribute the program's code
or any program derived from it but only if the
distribution terms are unchanged. Thus, the code
and the freedoms become legally inseparable” (FSF
2001).

The four freedoms of Free Software are thus:

 The freedom to run the program, for any purpose
(freedom 0)

 The freedom to study how the program works, and
change it to make it do what you wish (freedom 1).
Access to the source code is a precondition for this.

70 The Creative Commons was explained briefly in Chapter 1.

265

thecommoner :: issue 14 :: winter 2010

 The freedom to redistribute copies so you can help your
neighbor (freedom 2).

 The freedom to improve the program, and release your
improvements (and modified versions in general) to the
public, so that the whole community benefits (freedom
3). Access to the source code is a precondition for this
(FSF 2009)

The code and the freedoms become inseparable through the
ingenious element of reciprocity in perpetuity that is inherent in
the GPL. Its opponents call this relational modality a “viral
clause” in order to provoke associations with computer vira and
illness in general71. For the software privatisers, GPL'ed code is a
contamination, because it brings with it – as the code and the
freedoms are inseparable – the freedom to share and cooperate
and protects this freedom against enclosure.

The relational modality that instantiates reciprocity in perpetuity
is a clever articulation of sub-clauses to copyright that on the one
hand binds the code and the freedoms, while on the other, as a
consequence of this binding, ensures reciprocity between
developers and users within the community. In logical terms it is
stipulated in the GPL that if a GPL’ed code segment X is
included in programme Y, then Y, if it is released to the public,
must also be released under the GPL. In that way you are obliged
to extend and forward to others the four freedoms awarded to

71 Not unlike the subversion of the “framing effect” with regard to property
that I have presented in this essay as a response to Stallman's warning that
“most people” are unable to understand property beyond an absolute,
natural rights-based conception, David Bollier has given a positive meaning
to the term “viral” in his “Viral Spiral: How the Commoners Built a Digital
Republic of Their Own” (2008). This attempt reflects my own view: rather
more information, than less, rather investigate, than obscure.

266

Free Software as Property

you by the copyright holder through the distribution terms
defined in the GPL, in case you elaborate on a given segment of
Free Software and redistribute it. If you just modify and keep
your modified software to yourself you are not obliged to do
anything and can simply enjoy the four freedoms in private. In
the GPL Version 3 the relational modality that ensures reciprocity
in perpetuity is articulated as follows72:

“The GPL - Section 5: Conveying Modified Source
Versions.

You may convey a work based on the Program, or
the modifications to produce it from the Program, in
the form of source code under the terms of section
4, provided that you also meet all of these
conditions:

• a) The work must carry prominent notices
stating that you modified it, and giving a
relevant date. [In order that fellow
commoners know that code has been
changed and when.]

• b) The work must carry prominent notices
stating that it is released under this License
and any conditions added under section 7.
This requirement modifies the requirement
in section 4 to “keep intact all notices”. [The
conditions or additional terms referred to
here are irrelevant for our analysis.]

72 The entire text of the GPL is available online @
http://www.gnu.org/licenses/gpl.html.

267

thecommoner :: issue 14 :: winter 2010

• c) You must license the entire work, as a
whole, under this License to anyone who
comes into possession of a copy. This
License will therefore apply, along with any
applicable section 7 additional terms, to the
whole of the work, and all its parts,
regardless of how they are packaged. This
License gives no permission to license the
work in any other way, but it does not
invalidate such permission if you have
separately received it. [This is the reciprocal
specification: “the entire work” is the
original code, plus your contribution, which
then enters the Free Software commons. A
can never be separated from C and the
relational modality (reciprocity in
perpetuity) attaches to, or follows B as it
circulates. i.e. the commons grows.]

• d) If the work has interactive user interfaces,
each must display Appropriate Legal
Notices; however, if the Program has
interactive interfaces that do not display
Appropriate Legal Notices, your work need
not make them do so. [This is irrelevant for
our analysis.]

A compilation of a covered work with other separate
and independent works, which are not by their
nature extensions of the covered work, and which
are not combined with it such as to form a larger
program, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the

268

Free Software as Property

compilation and its resulting copyright are not used
to limit the access or legal rights of the
compilation's users beyond what the individual
works permit. Inclusion of a covered work in an
aggregate does not cause this License to apply to the
other parts of the aggregate”. [This clarifies that a
compiled – i.e. binary - Free Software programme
(or application) can be used with other programmes
without subjecting these other programmes to the
conditions of the GPL, thus defining the limit of the
reciprocal element. The exact details are not strictly
relevant for this analysis, but concerns the freedom
to combine Free Software in binary form with
programmes that are not Free Software. GNU/Linux
distributions, such as Ubuntu, do just that.]

Reciprocity in perpetuity should be clearly distinguished from the
reciprocal give and take that characterises a market economy, in
which individuals enter into contractual relations that are
characterised by direct reciprocity. Reciprocity in perpetuity is
likely to be a feature of most commons: the commons is always
there, for you to access and use and take from; however, it
demands care and attention in turn. A commons can be destroyed
by enclosure, but also by neglect or over-use. In the moment that
a commoner does not perform the duty of care that has been
distributed to her, the reciprocal link is broken: it might exclude
her from the commons or contribute to its collapse. This is most
obvious if we think of commons of the land and the ecological
balance that sustains them. The GPL ensures that everyone is
able to access the Free Software commons, and also that
everyone will act in ways that ensure its continuity (and in fact,
growth) into the future. Reciprocity in perpetuity refers to an
attitude of responsibility and responsiveness that is necessary in

269

thecommoner :: issue 14 :: winter 2010

order for the commons to remain perpetually there (see also
Section 2.1.3 on the distribution of care).

3.5.4 Copyleft loves copyright.

The GPL, anchored firmly in copyright law73, yet subverting
copyright, ensures me that if you use a bit of my code and add to
it, then the bit that you added will be available to me on the same
conditions. In that way our common creations are bound to and
by the same freedoms in perpetuity. Free Software hackers are
(neo-)commoners:

“Proprietary software developers use copyright to
take away the users' freedom; we use copyright to
guarantee their freedom. That's why we reverse the
name, changing “copyright” into “copyleft … It
doesn't mean abandoning the copyright; in fact,
doing so would make copyleft impossible. The word
“left” in “copyleft” is not a reference to the verb “to
leave” — only to the direction which is the inverse
of “right”” (FSF 2009).

73 Not only is copyleft dependent on copyright protection, but the GPL, that is
its specific wording, is protected by copyright. The GPL itself is therefore
not copylefted, but remains under conventional copyright. In this way the
GPL also interfaces with and makes use of existing copyright law. Stallman
explains why: “We don't want people to circulate modified texts that
purport misleadingly to be the GNU General Public License. Copyright
does not restrict the writing of license text. Thus, if you want to write a
license with wording similar to the GNU GPL but not exactly the same, you
can do so. But you can't copy our preamble without our permission, so you
can't make it appear to have come from us” (Stallman in Biancuzzi 2009).

270

Free Software as Property

Because the GPL is “merely” a set of sub-clauses in extension of
existing copyright law, which is awarded automatically upon a
creation's release to the public, in the moment that you do not
adhere to the terms and conditions under which the GPL puts
you, the GPL is rendered invalid. It follows that you can no
longer claim the four freedoms of Free Software, since they are
only yours to enjoy as long as you reciprocate them. Therefore,
when breaching the GPL the software in question is no longer
covered by the GPL's additional distributions terms, but reverts
to being covered under conventional copyright law. That, of
course, means that you are not allowed at all to copy or
redistribute the code in question. Breaching the GPL by
enclosing code is thus a de facto breach of copyright. I look at
court cases setting legal precedents for such breaching in Section
3.6.

In other words, the GPL is a “hack of genius” (Meretz 2004: 31)
that utilises existing law from within the system otherwise
threatening Free Software development, namely copyright law,
and subverts it through a reconfiguration that ensures reciprocity
in a community instead of exclusion on behalf of an individual
(see also Oksanen and Välimäki 2006). Copyleft, then, is not
only a word play, but a whole new way of imagining copyright. It
is on this basis that the Free Software movement is working to
reform copyright law. They do not by any means want to
eliminate copyright law, since without copyright the GPL loses
its trespassory protection and hence means of defence. This has
already been tested in a court of law (see Section 3.6 below).

That copyleft is dependent on copyright is often misunderstood,
not only in influential textbooks on copyright law as we saw
above, but also among anti-capitalists. The attentive reader will
by now be aware that this reliance of a commons on the

271

thecommoner :: issue 14 :: winter 2010

institution of private property is by no means contradictory. On
the contrary, in capitalist democracy, it is in fact inevitable.

The communitarian form of property that Harris describes, and
which we adopted as a model of an autonomous commons within
capitalism, represents the Free Software commons well. Its
trespassory protection, given by copyright yet expressed as
copyleft, circumscribes a realm of collective-freedom-to share
and cooperate. This relational modality is articulated in the form
of the GPL (a property protocol), which provides use privileges,
and indeed a certain amount of control power to anyone whose
actions do not undermine the conditions of reciprocity stipulated
within it. The control power of the copyright holder is used to
surrender the exclusivity of that control power, making it
available to everyone who agrees to surrender theirs in turn under
the same conditions. Use privileges are opened up to anyone in
that way. The capitalist characteristic of property, the exclusive
right to wealth effects is, as a side-effect of the surrender of
control power, made non-exclusive: everyone can potentially sell
products and services based on GPL’ed software code, as long as
the code continues to circulate freely.

Understood in this way, the configuration of property relations in
the Free Software commons can be illustrated in this manner (see
next page):

272

Free Software as Property

Illustration 10: The GPL as property configuration.

Both the original decision to (conditionally) surrender control
power through copylefting one's creation, as well as any other
decision made with regard to software code released under the
GPL are legitimised by reference to common values of the
hacker community, such as the fostering of sharing and
cooperation. The GPL is an articulated protocol of such common
values, and affords the author and everyone else use and
exchange privileges.

Copyleft uses copyright as its enforcement mechanism in a world
dominated by private property relations and authorised self-
seekingness on behalf of corporations – that is, authorised
profiteering in the interest of shareholders. In a world of

273

thecommoner :: issue 14 :: winter 2010

continuous enclosure, that is increasing individual and quasi-
individual control powers over land (and everything else),
subversion of enclosure might be the only way to stop its
progress short of reverting to increased state regulation. To
subvert enclosure is to subvert individual and quasi-individual
control powers, by using the authority so invested to surrender
some control power (conditionally) and open up use privileges to
others. This is what copyleft does. It is also, in essence, what
social centres and hacklabs do: some social centres are squatted,
others are rented, and again others privately owned. In all three
versions some degree of control is conferred respectively upon
(i) the quasi-individual collective of squatters, (ii) tenants or (iii)
landlords. In the squat, control power is de facto rather than de
iure based on the physical possession and occupation of the
building or plot of land. The rented social centre means that the
use-privileges and some control power has been contracted out
from the owners to the tenants. In the case of a social centre
being privately owned by the social centre collective (often in
form of a cooperative), control power lies even more
straightforwardly with the centre. In all cases, however, this
control is used to open up use-privileges to the wider community,
as well as surrendering some decision-making power over how
the space is used and by whom (though usually not the power to
alienate the title on the market, i.e. the power to sell the centre).

Within capitalist democracy, most commons will have to rely on
some sort of enforcement mechanism that can protect the
commons from enclosure. Private property rights come with such
state sanctioned powers of enforcements attached and, in
principle, instances other than copyright can be “hacked” in a
similar way.

The relation between the GPL and copyright law is one of
dependence. But this dependence has less to do with the

274

Free Software as Property

fundamental need for private property in social organisation, or
with the logical priority of private property. Rather, it has to do
with the relentless nature of capitalist privatisation which creates
the need for strong trespassory protection of a commons in the
first place.

If hackers bought a piece of land and fostered a forest garden,
they could constitute themselves by articulating their decided
upon relational modalities with regard to their forest garden
commons. As discussed in Chapter 2, coming together to buy a
piece of land in legal terms is simply an instance of group private
property – like a corporation – but what constitutes a commons is
not only a matter of its precise legal foundations. A commons is
an idea and it is an experimental process of commoning: working
together, sharing and cooperating. As an act of creation the
commons is on a trajectory away from the state and its modalities
– by which door it exits is not necessarily a crucial matter. It is a
collective expression and fulfilment of needs and desires. A
commons self-articulates in and through commoning and its
emergent property relations and protocols. One way it can defend
itself is through the co-option of capitalist trespassory protection
for its own ends.

Structurally speaking – with regard to social organisation – the
“only” difference between private property and the configuration
of property inherent in the GPL is the shifted focus from
individual exclusion and self-seekingness to a sharing and
cooperating community. Both are relations between people with
regard to things, structured by normative protocols.

If we recall the process described in the Introduction from the
Magna Carta and the Charter of Forests to the American
Declaration of Independence, which was a process from rights
articulated for collective and communal benefit to rights

275

thecommoner :: issue 14 :: winter 2010

articulated for individual privilege, we see here the exact
reverse: copyright is articulated for the privilege of individuals to
exclude others, whereas the GPL subverts that individual
privilege and transforms it into an articulation that ensures
collective benefits in a community of reciprocity. Private
property - in the sense of it conferring decision rights, sanctioned
by the state - can therefore be really useful for commonism. The
Free Software commons is a function of private property.
Standing on that foundation, it is a rather safe commons.
However, it is not necessarily on the legal basis of private
property that the Free Software commons is constituted. It is
constituted as a commons by the voluntary association of
hackers. They act according to their common constitutional
liberties, as it were.

3.5.5 Constituting a commons.

In addition to being a clever legal document, moreover, the GPL
is also a constitution of the Free Software movement (or
community). It defines the boundaries of the software commons
and binds together the commoners in the practices of
commoning. It communicates a global vision for the community
of software freedom, and articulates its relational modality.
Furthermore, the GPL is an expression of the idea that freedom
as collective-freedom-to needs to be written into the normative
protocols that guide behaviour in capitalist democracy, and
indeed, that it can be written into protocols. Inscribing
collective-freedom-to in that manner requires certain conditions
to be observed by all, in order for this freedom to remain
collective into the future. But as such, these conditions are
voluntary and reciprocal: you only have to abide by the rules if
you want to use the resources of the commons, and you can

276

Free Software as Property

expect reciprocity in doing so. The commons is protected both
through the practices of commoning and reciprocity in
perpetuity, but of course also by the trespassory rules that
copyright enacts. However, with Free Software, trespassory
protection does not exclude people. Rather, it asks them to act in
a particular kind of way. The Free Software commons is “open”
to people not according to their identities (in the birth certificate
kind of sense) but according to their actions.

Wendy Pullan (2004) in her architectural studies of the Israeli
wall built to contain the Palestinian people makes an analytical
distinction between thick and thin walls. Thick walls “structure
differences and transitions, thereby embodying and fostering a
certain richness of meaning”. Thick walls are constitutional of
identity, yet permeable. Pullan uses the example of the Roman
poemerium, the symbolic furrow later echoed in the city walls,
“which deviated as necessary and were added to and changed
over time to represent the practical structures of daily life” (ibid.)
to communicate what a thick wall is. A thick wall is a facilitator,
a mediator and point of reference, whereas thin walls, such as the
Israeli one, are “constructed expressly to separate and divide”.

Pullan’s perspective is helpful to understand the GPL in
metaphorical terms. We can understand the GPL as a thick wall
around the Free Software community, protecting it, but not
excluding the rest of the world unconditionally: the wall that the
GPL instantiates is best understood as an invitation to join an
intentional and autonomous community, whose goal is “to give
people liberty, and to encourage cooperation, to permit people to
cooperate” in the understanding that one should “never force
anyone to cooperate with any other person, but make sure that
everybody’s allowed to cooperate, everyone has the freedom to
do so, if he or she wishes” (Stallman 2001b).

277

thecommoner :: issue 14 :: winter 2010

The GPL is based on distribution rather than exclusion (Weber
2004) in that it de-emphasises the regulation of an individual
owner/creator who can exclude others - and for how long - from
access to and use of software code. Rather the GPL instead
emphasises how, and under which conditions software code can
be shared and distributed in a common fashion. In doing so, the
GPL unites people: it builds communities. The Free Software
movement – “vitally concerned with what allows them to come
into being in the first place” – has in many senses set new
standards for autonomous constitution. This again underpins the
notion of the Free Software community as a recursive public: it
thrives in global civil society and strengthens global civil society
by showing by example how global voluntary associations can
organise and protect themselves.

Because it is a global network of communities composed of
members residing in respective jurisdictions, each subject to
different specificities of local copyright law, the GPL is also an
experiment in global(ised) law making beyond the nation state
through voluntary associations74. A property law made within
global civil society by a social movement. The global dimension
is reflected in the recently completed process to update the GPL

74 In an aside it should be noted that lex mercatoria exhibits similar traits.
Legal sociologist Guenther Teubner argues that “Lex mercatoria, the
transnational law of economic transactions, is the most successful example
of global law without a state ... [but] it is not only the economy, but various
sectors of world society that are developing a global law of their own. And
they do so ... in relative insulation from the state, official international
politics and international public law ... Technical standardization and
professional self-regulation have tended towards worldwide coordination
with minimal intervention of official international politics. The discourse on
Human Rights has become globalized and is pressing for its own law, not
only from a source other than the states but against the states themselves.
Especially in the case of human rights it would be "unbearable if the law
were left to the arbitrariness of regional politics" (Teubner 1997: 3-4).

278

Free Software as Property

to Version 3, which includes efforts of “denationalization”, in
order to position the GPL within global civil society, in an
“attempt to cut the language of the license loose from any
particular system's copyright law” (Moglen 2006), so as not to
confine it to any specific nation state's legal system and its
terminology.

Free Software is created for both individual use and the common
good. It contributes to society by creating commonalty: the Free
Software community is a voluntary association of individuals
whose creative agency make up a software commons. The GPL
facilitates a codification of unwritten rules, norms, and customs
derived from, on the one hand, the social and political concern
that free access to source code be crucial for society, and on the
other, the practical realisation that good software is produced by
sharing and experimenting with each other’s code freely and
openly as a community. Realising that the most central element
of software is the need to share, circulate and distribute it, for the
sake of software evolution itself and for the sake of the common
good of the people, the GPL articulates freedoms that focus on
sharing and cooperating and secures the continued possibility to
do so.

For many years the GPL remained untested in court and as such
the legal validity of the self-organised and autonomously
declared software freedoms remained unknown. The Free
Software movement never wished to test it, but kept to a private
policing and enforcement of the GPL when breaches became
known (see below). When the time came for the GPL to enter a
court of law the movement was a global community with well-
established and widely recognised customs, and many awaited
the first decisions with great anticipation.

279

thecommoner :: issue 14 :: winter 2010

3.6 Defending the GPL: a recursive public self-organises.

The way in which the Free Software movement has responded to
violations of the GPL is a testimony to its self-organisational
capacity. It provides an example of what Rushkoff finds so
promising in “Open Source” as a model for democracy, because
the Free Software movement's engagement with the law and its
self-legislative capacity:

“...marks a profound shift in our relationship to law
and governance. We move from simply following
the law, to understanding the law, to actually feeling
capable of writing the law: adhering to the map, to
understanding the map, to drawing our own. At the
very least, we are aware that the choices made on
our behalf have the ability to shape our future reality
and that these choices are not ordained but
implemented by people just like us” (2004: 58).

Not long after the GPL was first used in 1989, enforcement
activities commenced as informal community efforts often in
public Usenet discussions. The next ten years the Free Software
Foundation was the only established organisation defending the
GPL and “their enforcement was generally a private process; the
FSF contacted violators confidentially and helped them to
comply with the license”. It was not until the early 2000’s that
things changed. “By that time, Linux-based systems had become
very common, particularly in embedded devices such as wireless
routers” - in a realm where non-free software is generally
prohibitively expensive to implement and customise - and a new
dimension of enforcement began: “public ridicule of violators in
the press and on Internet fora supplemented ongoing private
enforcement and increased pressure on businesses to comply”.
The GPL Compliance Lab was established by the FSF in 2003,

280

Free Software as Property

as more and more cases became known, with a view to building
“community coalitions to encourage copyright holders to
together settle amicably with violators” (SFLC 2008).

In 2004, a German Free Software programmer called Harald
Welte commenced a more organised enforcement approach with
a project called GPL-violations.org. In late 2003 he had
discovered that “a bunch of companies” were using code from a
GPL'ed project - on which he was working - in a manner that
breached the GPL. He became active in the legal realm and in the
same way as it is said that Free Software often begins with an
itch, a need to solve a personal, specific right here and right now
problem, Welte set up the web site GPL-violations.org with an
accompanying mailing list for sharing reports, analyses and
advice on alleged, potential and definitive breaches of the GPL.
They have been busy ever since - in the “About” section on their
web site it reads:

“By June 2006, the project has hit the magic "100
cases finished" mark, at an exciting equal "100%
legal success" mark. Every GPL infringement that
we started to enforce was resolved in a legal
success, either in-court or out of court” (GPL-
Violations.org 2009).

The GPL-violations.org project has expanded accordingly, there
are several busy mailing lists, in addition to the site, where
people consult each other – that is, discuss as software
commoners if a particular act is a violation or not. To frame it in
terms of property, the relating-subject (A+C) is developing its
own enforcement mechanisms and through discussions about
enforcement they refine their own understanding of the relational
modalities of their community and reflect upon what is permitted
in the commons and what is not. For instance, discussing the

281

thecommoner :: issue 14 :: winter 2010

grey areas of the GPL in a fast developing field of embedded
devices is a perennial task.

When the GPL was finally fully tested in a court of law, in
September 2006 in Frankfurt am Main, the judgement read that
because a device incorporating GPL'ed code was brought to
market without proper GPL compliance, the:

“Defendant is ordered to pay to Plaintiff 2,871.44
EUR, plus interest on this amount of 5 percentage
points above the base interest rate since February
25, 2006; regarding the amount of 141.34 EUR,
payment shall be made in exchange for the transfer
of ownership of the data storage unit “[…] Wireless
G Network Media Storage DSM-G6000” which is
owned by Plaintiff.”(GPL-Violations.org 2006).

Another crucial element of the ruling in the German court asserts
that the GPL is a valid software license, a proper instance of
copyright, and that in effect it is a contractual relation, accepted
by the defendant and therefore the plaintiff's demands are ruled
in favour of:

“The GPL applies to the legal relationship between
the authors and Defendant. The three software
programs are undisputedly licensed only under the
terms of the GPL. In the case of free software it is to
be assumed that the copyright holder by putting the
program under the GPL makes an offer to a
determinable or definite circle of people and that
this offer is accepted by users [of the software]
through an act that requires consent under copyright
law; in this respect, it can be assumed that the
copyright holder enters into this legal relationship

282

Free Software as Property

without receiving an actual declaration of
acceptance [from the users] (Section 151 of the
German Civil Code (BGB)).” (ibid.)

The ruling went against the argument of the defence which was
loosely based on and attempted to mobilise anti-trust laws. The
German court is clear and the logical aspect of the verdict
reflects the analysis of the preceding section, which stated that if
breaching the GPL, the code in question reverts to be protected
under conventional copyright:

“It need not be decided whether, as Defendant
argues, the provisions of the GPL violate Article 81
EC and Section 1 of the German Antitrust Act
(GWB), in particular the prohibition against price
fixing and of predetermining the conditions of
secondary contracts in the first contract. This would,
according to Section 139 of the German Civil Code
(BGB), result in the invalidity of the entire license
agreement with the consequence that Defendant
would not have a right of use in the software at all,
so that Plaintiff could file a copyright infringement
claim for that reason.” (ibid.)

If you invalidate the GPL you are left with the foundation upon
which it rests: copyright, and copyright is per default an
exclusive right of the creator; thus contesting the validity of the
GPL is practically useless, since an invalidation of the GPL at
any rate will render the copyleft holder an exclusive copyright
owner. Those who do not comply are left with but one choice,
apart from paying up and withdrawing the device, and that is to
play along. The rulings of this kind have had profound effects
and there is now a proliferation of what is called “third-party

283

thecommoner :: issue 14 :: winter 2010

firmware” projects for wireless network devices, adding features
and capabilities beyond what was originally intended by the
manufacturers75. The history of the GPL in court and the
mechanisms of enforcement is so far a successful one.

During 2006 a range of even firmer defence mechanisms
emerged. The Free Software Foundation Europe set down a
Freedom Task Force, which provides licensing services to
individuals, projects and businesses which use Free Software,
working with GPL-violations.org and complementary to the
Software Freedom Law Center (SFLC), which provides “legal
representation and other law-related services to protect Free
Open Source Software” (SFLC n.d.).

A significant conflict that was recently concluded began when
the Association pour la formation professionnelle des adultes
(AFPA), a French educational organisation, ordered and
purchased some software, which turned out to be in breach of the
GPL:

“The events of the case go back to early 2000, when
Edu4 was hired to provide new computer equipment
in AFPA's classrooms. Shortly thereafter, AFPA
discovered that VNC was distributed with this
equipment. Despite repeated requests, with
mediation from the Free Software Foundation
France, Edu4 refused to provide AFPA with the
source code to this version of VNC. Furthermore,
FSF France later discovered that Edu4 had removed

75 One of these projects has become a general purpose GNU/Linux
distribution for embedded devices and the Free Software commons were not
only defended by the court, but expanded it into the realm of routers,
switches and embedded devices of all kinds. See http://openwrt.org/

284

Free Software as Property

copyright and license notices in the software. All of
these activities violate the terms of the GNU GPL.
AFPA filed suit in 2002 to protect its rights and
obtain the source code” (FSF France 2009).

When the case was finally concluded in the Paris Court of
Appeals on September 22, 2009, with no further appeals
possible, the GPL was once again upheld on the basis of
copyright law. However, in this ruling a new aspect to the
defence of Free Software was established. It was not a developer,
whose code and freedoms had been violated, but an end-user
who filed suit and won:

“[W]hat makes this ruling unique is the fact that the
suit was filed by a user of the software, instead of a
copyright holder. It's a commonly held belief that
only the copyright holder of a work can enforce the
license's terms - but that's not true in France. People
who received software under the GNU GPL can also
request compliance, since the license grants them
rights from the authors” (ibid.).

This illustrates that users are as much part of the software
commons as the developers, in legal terms, since they too are
granted the rights articulated in the GPL and can act on them and
have their claims validated in a court of law. Moreover, since no
further appeals are possible, this sets a legal precedent: in future
legal proceedings in France, the GPL, on the basis of its clever
relation to copyright law, ought to be automatically upheld with
reference to this case. Given that intellectual property laws,
through particularly TRIPs and WIPO (see Chapter 1), are
increasingly global in nature and sought to be harmonised across
national borders, a precedent in a leading industrial nation like

285

thecommoner :: issue 14 :: winter 2010

France might also carry a certain weight in other jurisdictions.
Certainly the argument can be recycled in different national
contexts by software commoners.

We can conclude that on the basis of the hacker customs and
cyberspace values that self-organised voluntary associations are
emerging to protect the four freedoms of software. The defence
and enforcement of the GPL helps build a sustainable community
which is capable of interfacing with the external judiciary to
successfully translate the visions from within in relation to the
old ways without.

The Statute of Anne, from which there is straight line to the
modern concept of copyright, reflected the revolution of the
printing press. The GPL and Copyleft reflect the revolutionary
way in which information can be shared in cyberspace. It is an
expression of needs and desires in a new technological
environment:

“Once copying is a useful and practical activity for
ordinary people, they are no longer so willing to
give up the freedom to do it. They want to keep this
freedom and exercise it instead of trading it away.
The copyright bargain that we have is no longer a
good deal for the public, and it is time to revise it—
time for the law to recognize the public benefit that
comes from making and sharing copies” (Stallman
1996).

Ten years later Stallman's brain child prevailed in court.

286

	3 Free Software as Property
	3.1 Introduction.
	3.2 The nature of code.
	3.3 A brief history of Free Software and its imaginary, scientific and cultural origins.
	3.3.1 Embedded in the scientific commons.
	3.3.2 A brief history of the Free Software movement's resistance to privatisation.

	3.4 The Free Software movement as a recursive public.
	3.5 The GNU General Public License: copyright subversion and constitution.
	3.5.1 Misunderstanding the GPL.
	3.5.2 The GPL: just a software license?
	3.5.3 Copyleft freedoms: reciprocity in perpetuity.
	3.5.4 Copyleft loves copyright.
	3.5.5 Constituting a commons.

	3.6 Defending the GPL: a recursive public self-organises.

